Big Data Analytics and Visualization with Spatio-Temporal Correlations for Traffic Accidents

نویسندگان

  • Xiaoliang Fan
  • Baoqin He
  • Cheng Wang
  • Jonathan Li
  • Ming Cheng
  • Huaqiang Huang
  • Xiao Liu
چکیده

Big data analytics for traffic accidents is a hot topic and has significant values for a smart and safe traffic in the city. Based on the massive traffic accident data from October 2014 to March 2015 in Xiamen, China, we propose a novel accident occurrences analytics method in both spatial and temporal dimensions to predict when and where an accident with a specific crash type will occur consequentially by whom. Firstly, we analyze and visualize accident occurrences in both temporal and spatial view. Second, we illustrate spatio-temporal visualization results through two case studies in multiple road segments, and the impact of weather on crash types. These findings of accident occurrences analysis and visualization would not only help traffic police department implement instant personnel assignments among simultaneous accidents, but also inform individual drivers about accident-prone sections and the time span which requires their most attention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M

Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...

متن کامل

Big Data Visualization for Occupational Health and Security Problem in Oil and Gas Industry

Association rule learning is a popular and well-researched set of methods for discovering interesting relations between entities in large databases in real-world problems. In this regard, an intelligent offshore oil industry environment is a very complex scenario and Occupational Health and Security (OHS) is a priority issue as it is an important factor to reduce the number of accidents and inc...

متن کامل

A Visual Analytics Approach for Extracting Spatio-Temporal Urban Mobility Information from Mobile Network Traffic

In this paper we present a visual analytics approach for deriving spatio-temporal patterns of collective human mobility from a vast mobile network traffic data set. More than 88 million movements between pairs of radio cells—so-called handovers—served as a proxy for more than two months of mobility within four urban test areas in Northern Italy. In contrast to previous work, our approach relies...

متن کامل

Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions

The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015